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Abstract

When constructing an algorithm for the numerical integration of a differential equation,

one should first convert the known ordinary differential equation (ODE) into an ordinary
difference equation (OAE). Given this difference equation, one can then develop an
appropriate numerical algorithm. This technical note describes the derivation of two
such OAEs applicable to a first order ODE. The implicit OAE has the same asymptotic
expansion as the ODE itself; whereas, the explicit OAE has an asymptotic expansion
that is similar in structure but different in value when compared with that of the ODE.

Many physical processes can be represented by systems of first order ODEs of the form

or equivalently as

3ro

JC_ + P_X_ = Q_ (for a = 1,2,...,N), (1)

=
- Q_[X_,t]-Pa[X_,t]Xa (fora,/3= 1,2,...,N), (2)

where the X_ are the N independent variables to be solved for, which may be scalar, vector

or tensor valued in applications. The parameters P_ (a scalar), and F_ and Qo (of the

same rank/type as X_), are functions of the variables XZ and t, in general. If neither

P_ or Q_ depends on X_ for all a, fl, then the system of equations is said to be linear;

otherwise, it is nonlinear. The dot '" is used to denote differentiation with respect to time,

t. We choose time to be the dependent variable for illustrative purposes, as it so often is in

physical applications; however, this is not a necessary restriction on the theory presented
herein.

*A technical note prepared for the Journal o.[ Computational Physics.



The ODE of equations (1) and (2) is a point function in time. Numerical integration

algorithms, however, are based on functions evaluated over an interval in time. We therefore
introduce the first order OAE

AX_
At - J:o[X_,At,r], (3)

where

and therefore

AX. = X.[t+At]- Xo[t], (4)

obtain the recursive integral equation [1]

X_,[t+At] = exp a_=t

+ J(=t exp -

P_ [X_, (] d(] X_ [t]

e [xe,(ld( a(,
J(=(

(6)

which is an exact solution to this first order ODE. John Bernoulli [2] developed a nonre-

cursive solution similar to (6) in 1697 for the equation )( = aX + bX n, whose solution

was sought by Jacob Bernoulli [3] in 1695. John's solution was expressed as a quadrature

because the integral of dz/z in the form of a logarithm was not generally known until later

that same year [4].

The authors have obtained a variety of approximate and exact solutions to (6) by rep-

resenting the parameters P_ and Q_ with series expansions, and integrating them term

by term. The resulting linear approximation, which was acquired by using Taylor series

expansions, is given by [1]

This approximation becomes exact whenever P_ and Q_ are both constants, i.e. whenever
the ODE is linear.

Rearranging the recursive solution (7) into a difference equation, one obtains two new

relationships; they are, for the implicit case,

(1--e-P_[X_'t+At]'At_ (P_[Xz,t+Atl.AX_ F_[X_,t+:_[Xz,At, t+At] = -p--[_Z,t+At_.At .] + At])

o[ o q [x ,t+At]+ O(t_At) _',_ ' (8)

x.[t + At] = x.[t] + Tl./,,t. (5)

The OAE represents the ODE in numerical integration algorithms. The formulation is

implicit when v = t + At; whereas, it is explicit when r = t. The development of existing

algorithms begins with the tacit assumption that ._'_ = F_. We shall now show that this

assumption is in error. This is accomplished by analytically integrating the ODE of (1) in

a recursive manner, which permits the difference function 9:"a in (3) to be determined for
the OAE.

One can introduce an integrating factor into the differential equation (1) and thereby



andfor the explicit case,

&Ex ,At, tl= (1_ e-PotX.J , -fi__ / F_[XI_'t]
+0 o q.[xz, t]t]

(9)

Notice the presence of an extra AXa term in the implicit relation (8), which acts as a

correction to the derivative F_, and which is not present in the explicit relation (9).

The coefficient (1 - e-P_[X_'@/'t)/P,_[X_, r].At is a correction factor of the first order

that results from taking the differential function F_ at time v and converting it into a

difference function ._'_ at time v taken over the interval (t, t+At). (Higher order solutions

for the difference function .T'_ will be given in a future paper.) This coefficient goes to 1 in

the limit as At goes to 0, as it must so as to recover the differential; in other words,

lim .%'_[Xz, At, r] = F_[Xz, T]
At ---*0

(lo)

for both the implicit and explicit cases. A note of caution when writing computer code. In

the neighborhood of P_[Xz, r].At _ 0, one needs to expand (1- e-P°[X_'_]'At)/P_,[X_, "*'].At

into a power series to secure a sound computational algorithm.

The presence of the coefficient (1- e-P_[Xt_'r]'At)/Po[Xz, r].At also introduces desirable

asymptotic characteristics into our numerical approximations. In particular, for the implicit

case where r = t + At, the asymptotic expansion for the OAE (3 with 8) is given by

Q_[X_,t+At]
lim X.[t+At]× (11)

_t_l_g¢ P_ [X_, t + At] '
P_>O

which is also the asymptotic expansion of the ODE (1 & 2). In contrast, for the explicit

case where r = t, the asymptotic expansion for the OAE (3 with 9) is given by

lim X_[t+At] _ Q_[Xe't]

P_>O

(12)

These two asymptotic expansions differ only in when their parameters P_ and Qa are
evaluated. For large time steps, the implicit case is asymptotically accurate and stable for

exponentially decaying solutions, i.e. when P_[X_, t] > 0 V t. Stability becomes an issue
only when P_ < 0. In constrast, the explicit case will oscillate around the true solution for

large time steps, but with much less potential of becoming unbounded when compared with

equivalent algorithms constructed without our correction coefficient. These oscillations can

be mitigated only by choosing smaller time steps.

The second integral in (6) is a Laplace [5] integral where the integrand has its largest

value at the upper limit, t+At, and possesses an evanescent memory of the forcing function,

Q_[Xz,{], provided that P_[Xz, _] > 0 over the interval (t, t+At). This fading memory

means that the solution will depend mainly on the recent values of the forcing function,

and that by concentrating the accuracy on the recent past we obtain accurate asymptotic

representations of the solution.

In the implicit solution, the integrands in (6) were expanded in Taylor series about their

upper limits [1], where each integrand has its largest value and contributes the most to the

3



integral. By retainingbut a singleterm in theTaylor seriesexpansionsthe integrandsare
accuratelyapproximatedwheretheyarelargest,andthe neglectof the higherorderterms
is only felt nearthe lowerlimits whereeachintegrandcontributesonly a smallamountto
the integralbecauseof its exponentialdecayfromtheupperlimit. Theneglectof thehigher
ordertermsin the Taylorseriesthusresultsin analgorithm that is asymptoticallycorrect
at the upper limit. Normally,whentreatingasymptoticexpansions,the exponentialdecay
of the integrandallowsthelowerlimit to bereplacedwith zeroor minusinfinity to easethe
integration.This wasnot donein the presentcase,however,sothat by retainingthelower
limit as t, we obtain a uniformly valid asymptotic algorithm in the implicit approximation

provided that P_[X_, (] > 0 over the interval (t, t+At).

In the explicit solution, the integrands in (6) were expanded in Taylor series about their

lower limits [1], where the neglect of the higher order terms in the Taylor series results in

integrands that become progressively more inaccurate as they approach their upper limits

where the contribution from each integrand is most important. The explicit approximation

is not, therefore, a valid asymptotic representation of the integral when the Taylor series

is truncated at a finite number of terms. However, when P_[X_, _] < 0 over the interval

(t, t+At), the reverse situation occurs. In this case the asymptotic solution is now obtained

by expanding the integrands about their lower limits, where this region of each integrand

now contributes the most to the integral. Here the implicit method, obtained by expanding

about the upper limit, does not give a valid asymptotic representation of the integral.

In conclusion, one only needs to replace the differential function F_[X/3, r] with the ap-

propriate difference function :T'_[X/_, At, r] in many existing numerical integration methods

(e.g. Euler and Runge-Kutta) to construct an appropriate OAE for the numerical integra-

tion of a given ODE, and thereby obtain substantial improvements in their performance.

We have demonstrated this in references [1, 6].
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